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We analyze the square lattice, which is allowed to fold on itself along its bonds in a two-dimensional
embedding space, with bending energy (u) and attractive (o <0) or repulsive (w > 0) interactions. We dis-
cuss two types of interaction, the first one is proportional to the contact area and the second one is pro-
portional to the number of pairs of elementary squares which occupy the same place in the plane. We
obtain the phase diagrams in the (u,w) plane for both interactions. We also perform the numeérical
analysis for the first type of interaction and discuss its relation to the sequential folding transition of the
polymerized membrane with the attractive interaction [F. F. Abraham and M. Kardar, Science 252, 419

(1991)].

PACS number(s): 02.50.—r, 82.65.Dp

I. INTRODUCTION

Recently there has been considerable interest in the
phase transition of polymerized (tethered) membranes [1]
with attractive interactions [2—6]. In a pioneering work
[2,3], Abraham and Nelson found by molecular dynamics
simulations that the introduction of attractive interac-
tions between monomers leads to a collapsed membrane
with fractal dimension 3 at sufficiently low temperature.
Subsequently, Abraham and Kardar [4] showed that for
open membranes with attractive interactions, as tempera-
ture decreases, there exists a well-defined sequence of
folding transitions and then the membrane ends up in the
collapsed phase. They also presented a Landau theory of
the transition and in addition, they discussed that the
folding transition is related to the unbinding transition of
bimembranes. Liu and Plischke [5] carried out Monte
Carlo simulations for a similar model and found that the
membrane undergoes a phase transition from the high-
temperature flat phase to the low-temperature collapsed
phase passing through an intermediate crumpled phase.
The intermediate crumpled phase exists over a certain
range of temperature and its fractal dimension is estimat-
ed as d r=2.5. Following this work, Grest and Petsche
[6] extensively carried out molecular dynamics simula-
tions of closed membranes. They considered flexible
membranes; the nodes of the membrane are connected by
a linear chain of n monomers. For short monomer
chains, n =4, there occurs a first-order transition from
the high-temperatures flat phase to the low-temperature
collapsed phase, but no intermediate crumpled phase.
For longer chains, n =8, the transition is either continu-
ous or weakly first order. With the assumption of the
continuous transition, the fractal dimension of the mem-
brane at the transition is estimated as d,=2.4. Mori and
Wadati [7] discussed the phase transition of a D-
dimensional (phantom) polymerized membrane with
long-range attractive interaction (» ~ ") and showed that
there are several types of phase transitions from a flat
phase to a compact phase depending on the type of the
interaction (y) and the dimension of the membrane (D).
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Especially, when the interaction is short ranged, the tran-
sition is continuous. Based on this result, they discussed
the possibility of the complete cancellation between the
“entropic” rigidity from self-avoidance [2] and the nega-
tive rigidity from attractive interaction, which causes the
crumpling transition of the membrane. This cancellation
only occurs when the membrane is very flexible. Other-
wise, the flat phase becomes unstable before the cancella-
tion becomes complete and the membrane shows the
sequential folding transition.

In order to describe the sequential folding transition of
the membrane, the folding degrees of freedom of the
membrane are important. The square lattice model was
at first introduced by David and Guitter [8] as a simple
model for polymerized membrane. The model is a
discrete rigid-bond square lattice, which is allowed to
fold on itself along its bonds in a two-dimensional embed-
ding space. By changing the bending rigidity u, it shows
a first-order transition from a completely flat phase
(u>0) to a completely folded state (u <0) [8,10]. The
triangular lattice case was also studied [9-11]. In this
paper, we would like to study a square lattice model with
attractive (0 <0) or repulsive interactions (w>0) as a
simple model that describes the sequential folding transi-
tion of the tethered membrane. As an interaction be-
tween different parts of the lattice, we study two types of
interactions: the first one is a potential that is propor-
tional to the contact area of the membrane and the
second one is proportional to the number of pairs of the
elementary squares that occupy the same place in the
plane. We discuss possible phases and phase diagrams in
the (u,w) plane for each interaction. For the first type of
interaction, we have also performed numerical studies.

The balance of our paper is as follows. In Sec. II, we
define the square lattice model with bending rigidity (u)
and interactions (). We consider two types of interac-
tions; the first one is a potential that is proportional to
the contact area of the lattice (CA type) and the second
one is proportional to the number of pairs of elementary
squares that occupy the same place in the plane (CP
type). We treat these models at mean-field level and
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study the stability of the flat phase (u >0) by attractive
interactions and the one of completely folded state
(u <0) by repulsive interactions. We obtain the phase di-
agrams in the (u,) plane for each potential. In particu-
lar, for the CA-type interaction, we find a partially folded
state in the region (u >0,0 <0). We perform numerical
studies for the model with the CA-type interaction in Sec.
III. We investigate the above theoretical results. In ad-
dition, we find a sequential folding transition of the lat-
tice. We conclude in Sec. IV with a discussion about the
difference between the potentials used here and the rela-
tion between the sequential folding transitions of poly-
merized membrane and the one of the square lattice.

II. MODEL SYSTEMS

We consider a model of foldings of a two-dimensional
square lattice with L XL size. We consider all possible
foldings of the lattice and each folding maintains the
correct distances between the neighboring sites. Two
configurations are identical if the positions of all corre-
sponding sites (or vertex) coincide and this definition of
the identical configuration does not distinguish between
the different manners of folding that lead to the same
final state. Figure 1(a) depicts such a lattice before the
folding, while Fig. 1(b) shows the section of it in a folded
state along its x axis. The membrane has of course two
such sections. The membrane is constrained to a plane
and the section is represented by a line of zero thickness
that folds in N=1,2,...,L segments of successive
length x,x,, .. .xy [14,15]. Correspondingly, the other
section, which folds in M segments, is represented by
Up,¥y, - -»¥y- These segments’ lengths x; and y; are
multiples of lattice constant @ =1. For convenience, in
the theoretical calculation, we treat them as continuous
quantities with uv cutoff (lattice constant @ =1). The to-
tal lengths are fixed:

N N
> x,=L, Zyj=L .
i=1 j=1

2.1

A configuration of the system is thus determined by a set
of natural numbers (N, M) and a set of positive numbers
X1,X9,+..3XN3Y15V2, - - -, Vp- Let the potential energy
for a configuration of the square lattice be denoted by
Unp(X15X0, oo 3 XNV V25 -+« Vg

The potential energy will be taken to consist of the sum
of two terms. First, as a bending energy, we assign ener-
gy k per unit length of a fold. We denote an interaction
between the elementary squares of the lattice as U, and
the potential energy for the system is written as

Unm(X 15X, oo 3 XNV 15825 - o5 Vr)
=(N—1«xL +(M — 1)L + U, (2.2)
=Uypy+U; . (2.3)

As an interaction between different parts of the square
lattice, we consider two types of interactions. The first
one is a potential that is proportional to the contact area
of the lattice. The contact area is determined by the area
difference between the initial stretched form and the

b) L,
n—-1 = 5
< D
C 3
? - ) ) 1

FIG. 1. (a) Stretched form of a square lattice of size L X L.
(b) Typical configuration of a section of the lattice. The folds
have a vanishing length. The lattice is not completely folded to
clearly indicate the configuration.

configuration considered. The potential is written as

UI,CA(XI’ ey XN Vs e e ,yM)zw(Lz—'LxLy) . (2.4)

Here, L, and L, are the widths in each direction of the
lattice [Fig. 1(b)] and are represented as

L, =max(x,x;—%x,+x3,...)

—min(0,x; —X5,...)
(2.5)
L,=max(y,,y,—y,+y;,...)

—min(0,y,—y,,...) .

We also consider a potential that is proportional to the
number of pairs of elementary squares that share the
same place in the plane (Contact Pair).

,xN;yl, s 7yM)
=w X (number of pairs of contact elementary squares).
(2.6)

In the usual discussion of polymer with attractive in-
teraction, the second type is usually employed [12].
However, the attractive interaction of a polymer in poor
solvent comes from that solute-solute and solvent-solvent
contacts are preferred to solute-solvent contacts. From
this point of view, we think the contact area potential
U ca is more natural than the contact pairs potential
U, cp and we will discuss the difference between these po-
tentials in the square lattice model.

For convenience we will use the reduced bending rigi-
dity and potential strength,

u=«/kgT, o=w/kgT .

UI’CP(xl, “ e

(2.7)

The partition function is given as
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Z(u,w,L)=N’§=lfawdxl famdxl v fawde fawdyl fagodyz o fawdxM

N M
i=1 ji=1
—
The evaluation of the configuration sum is very  Free energy &, is
difficult, we would like to treat the interaction term U, at
the mean-field level. At first we evaluate the partition _|72L exp(—uL), u>0
function with the potential Uy ,. By using Laplace Fo= —2uL? u<0. (2.14)
transform [15], the partition function can be calculated )
easily and the expression is The total number of folds Ny, is
- - ()
Z(u,0=0,L)=exp(29,L) . (2.9) NtotaIE(N+M_2)EL_au70
Here 7, is a solution of the following equation, 2L exp(—uL)—0(L — o), u>0
= (2.15)
exp(an,)n, =exp(—uL) . (2.10) 2L, u<0.
This behavior completely coincides with the previous re-
Then the free energy of the system is sults [8,10,13]. ‘
Next we would like to study the effect of interactions
=_ - 2
Fo=—InZ(u,0=0,L) on these results. From the above analysis, the lattice is in
=—29q,L . (2.11)  a completely flat phase (u >0) or completely folded state
(u <0). When the lattice is in the flat state, the attractive
Th dition (2.10) i . interaction is considered to break the flat state as in Fig.
e condition (2.10) is rewritten as 2(a). We assume the broken flat state is an uniformly
Iny, +an,=—uL . (2.12) folded state with N =1+ 1N, segments in each direc-

In the thermodynamic limit L — oo, the solution 7, is es-
timated as (a =1),

exp(—uL), u>0
N =

—uL, u<0. (213)

a)

L)

L L)2

FIG. 2. (a) Folding transition of a flat membrane. Attractive
interaction is considered to break the flat phase like in the
figure. (b) Uniformly folded state of a square lattice. Each seg-
ment has equal length X=L /N.

tion [Fig. 2(b)], that is each segment has equal length
X=L/N. We estimate the effect of attractive interac-
tions as

(Uca)=w(L2=%7),
(Ugp)=1oNAN*—1)x2 .

(2.16)
(2.17)

On the other hand, when the repulsive force breaks com-
pletely the folded state, it is not clear how the folded state
becomes unstable. We assume the above estimation holds
even in this case. And in what follows, we also take the
lattice constant a =0 for convenience. Then
n,=exp(—uL) and N, =2L exp(—uL). However,
when one interprets the results physically, the uv cutoff
has to be taken into account. The total free energy is
evaluated as

—29,L +o(L*—x?), CA case

Hu,0,L)= —29,L +1oN¥N?—1)x% CP case .

(2.18)

From the relation N, =2L exp(—uL), we can express
u in terms of N4,

uL =—1n(Nygy /2L) . 2.19)

In the above estimation of interactions (2.17), we use the
fold number N =1+ 4N,,, which is a function of u. In
order to rewrite the free energy F,(u,w,L) in terms of
(Nyota1» @, L), we perform the Legendre transform with
respect to u. Then the free energy 9(N g, @,L) is
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—NiotaInN o101 /2L + Ny —0L*(1—N"2), CA case

9N, ota1,@0, L)=uLN . — Hu,0,L)=

This free energy & has the following relation:

a9
aN. total

=ulL .

—NgInNyo 72+ Nyga — 0L N?—1), CP case .

(2.20)

(2.21)

In what follows, we discuss the effect of interactions on the completely flat phase and on the completely folded state.
At first, we discuss the effect of attractive interactions on the completely flat phase. In this case, Ny, is very small

(~0) and the free energy § is roughly estimated as

g(Ntotal,(U,L)=uL (Nt()tal ) "’7(”,0),[4)

_Ntotal In( Ntotal /2L) +Ntotal —oL thotal CA case

_Ntotal In( Ntotal /2L) +Ntota1 - _;'wL 2]Vtotal CP case .

Here we have discarded terms that are higher order in
N,oia1 Or that do not depend on N,,,,. From the relation
(2.21), N, is given by

2L exp[ —(uL +wL?)], CA case
total=

2L exp[ —(uL +1wL?)], CP case . 2.23)
This means that the completely flat phase becomes unsta-
ble with respect to both attractive interactions and the
critical values @ cq) are

—u /L, CA case

Dcritical — I_zu /L, CP case . (2.24)
These values go to zero in the thermodynamic limit
L — «, which is very natural. Because the free-energy
difference between the completely flat state and the one-
fold state with a crease at its center is
S6F =%wL2+uL —In2 and it becomes negative for
o < —2u /L [2]. However, after some sequential foldings,
the behaviors of the membrane are different for each in-
J

Urer(xp oo 5 Xn30 15 - - -

Then the free energy has the following additional term,

(Uper)=1w'LAN*—1)(N*—-2). (2.28)
Then Eq. (2.21) is roughly,
o= N:ZI —+ Lz;mm (N o /2L)+ L' N2y -
(2.29)

This equation has solutions N, for any value of ® when
o' >0. Especially, depending on the value of ', there is
the possibility that the equation has two solutions for
some value of w. Following the discussion about the
coil-globule transition of a polymer, it corresponds to a

, Yy )=o' X (number of sets of three contact elementary squares) .

(2.22)

f
teraction. In this case Ny, is not small and Eq. (2.21)
becomes

—wL?/N3, CA case

uL ~ —wL?N, CP case .

(2.25)
In the CP case, the effect of interaction becomes more
and more important as N becomes large. And in the
thermodynamic limit (L — ), the bending rigidity be-
comes irrelevant and the membrane is in the completely
folded state.

We also note that Eq. (2.21) has the following form:

uL = —In(N 0y /2L)— L0L*N 1) - (2.26)

When o is negative, the right-hand side has a minimum.
If u is small enough, the equation has no solution. The
reason is that the free energy has no minimum and the
model predicts a complete collapse of the membrane
(N—o0). In order to avoid this catastrophe [12], we
need to introduce three-body repulsive interactions such
as

(2.27)

[
discontinuous transition (change in N becomes discon-
tinuous) [12].

On the other hand, in the CA case, the interaction be-
comes small as N becomes large and balancing the effect
of bending rigidity and that of attractive interaction [Eq.
(2.25)], N behaves as L!/3. The behavior of the mean
area is estimated to be (L, XL,)~x>~L*?. That is,
the number of folds is small and the membrane is not in
the completely folded state. We call this phase the par-
tially folded state and analyze its behavior with a numeri-
cal method later.

Secondly, we study the stability of the completely fold-
ed state with respect to repulsive interactions. In this
case, N, is large (~2L). In the CA case, the interac-
tion is irrelevant and the completely flat phase is stable
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with respect to the weak repulsive interaction. However,
the situation is not so simple. In the completely folded
state, the free energy per elementary square is
Sftoa=2u +@ and in the flat phase fg,,=0. From the
discussion given in [10], the free energy of the system is
given by

fsquare zmin(ffo]d7fﬂat) . (2.30)

Consequently, there occurs a first-order phase transition
between a completely flat phase (2u +© >0) and a com-
pletely folded state (2u + <0). The intermediate folded
state [0 <N,y <2(L —1)] does not appear [16]. In the
CP case, the repulsive interaction becomes very large and
the completely folded phase becomes unstable. Even if N
and o are small, the repulsive interaction wins over nega-
tive bending energy in the thermodynamic limit (L — o)
and we think that the membrane is flat. However, in this
case, the above estimation of the interaction (2.17) is not
good. Because, when the membrane is almost flat, nega-
tive bending energy causes a crease at the edge of the
membrane, not at its center. Even if the system size is
large a fold can occur at its edge and the membrane is not
in the completely flat phase.

Phase diagrams for both interactions are summarized
in Fig. 3. Figures 3(a) and 3(b) correspond to the phase
diagrams of the system with CA interaction and that of
the system with CP interaction. In the domain
(¥ >0,w>0), the membrane is in the completely flat
phase (N, =0) and in the domain (u <0,w <0), the
membrane is completely folded (N, =2L) for both in-
teractions. The completely flat phase (u# >0) becomes
unstable by both attractive interactions (@ <0), however,
the resulting phases are different. In the CA case the
membrane is partially folded and Ny, ~L'/? and the
mean area behaves (LxLy )~L*3. In the CP case, the
membrane is completely folded. When the system size is
finite (L < o), both systems show the sequential folding
transition. In the domain (u <0,w > 0), the folded state
also becomes unstable in both systems. In the CA case,
there occurs a first-order phase transition from the com-
pletely folded phase to the completely flat phase at the
line (2u +@=0). In the CP case, the completely folded
state becomes unstable by any amount of repulsive in-
teraction and the membrane becomes flat.

III. NUMERICAL STUDIES

In this section, we will study the square lattice with
CA interaction numerically. In the previous section, we
have treated the segment lengths as continuous quanti-
ties. Hereafter, we return to the original discrete system.

The potential we consider is

UN,M=U1'V,M+UI,CA(LX)Ly) ) (3.1)
and we perform the configuration sum directly. From
the definition of U; o4 [Eq. (2.4)], the above potential only
depends on the folding number (N —1,M —1) and the
width of each section (L,,L,). We can interpret each

a)

Completely
flat chase
Completely v
folded phase
Partially
folded phase
b)
Completely
Flat phase flat phase
Completely
folded phase

FIG. 3. (a) Phase diagram in the (#,0) plane for the square
lattice with CA-type interaction. Three first-order lines
0=—2u(u<0), u=0(w<0), and ©=0(u >0) separate the
three phases, completely flat phase, completely folded state, and
partially folded state. (b) Phase diagram for the square lattice
with CP-type interaction. One first-order line ®=0 separates
the completely folded state from the flat phase.

section as a one-dimensional random walk with L —1
steps and it has 2L ! states. The main part of numerical
calculation is the number counting of states, which is
specified by the final length / (=L,,L, in the previous
section) and the bending number b (=N —1,M —1).
Table I shows such numbers that represent the degenera-
cies of corresponding (/,b) states for the L =12 case.
Hereafter, we denote such a number as D ([,b).

Then we execute the following “standard” calculation
to evaluate the partition function and other thermo-
dynamic quantities for each set of parameters (u,w). The
partition function is evaluated as

L L-1
Z(u,0,L)= 3, > D(L,,N)D(L,,M)
L,L,

=1 N,M=0
Xexp[_UN,M(NvM;nyLy)] (32)
where
Uyu(N,M;L,,L,)=uL(M+N —2)—oL,L, . (3.3)

Note that we have moved the energy origin by a constant
—wL? from the definition of the previous section. The
thermal average () of some physical quantity
O(N,M,L,,L,) is defined as
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TABLE 1. The number D (/,b) of the states that have the length / and the b times folds for an 11-step

random walk, obtained by exact enumeration on the computer.

b 0 1 2 3 4 5 6 7 8 9 10 11
1

1 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 1 7 20 30 25 11 0

3 0 0 0 1 10 56 102 140 80 30 0 0

4 0 0 1 16 74 139 192 100 55 0 0 0

5 0 0 6 38 84 140 84 70 0 0 0 0

6 0 1 13 38 86 70 77 0 0 0 0 0

7 0 2 8 34 32 56 0 0 0 0 0 0

8 0 2 12 20 44 0 0 0 0 0 0 0

9 0 2 4 18 0 0 0 0 0 0 0 0

10 0 2 11 0 0 0 0 0 0 0 0 0

11 0 2 0 0 0 0 0 0 0 0 0 0

12 1 0 0 0 0 0 0 0 0 0 0 0

L L—1
(O(NM,L,,L))= 3 > D(L,,N)D(L,,M)O(N,M,L,,L,)exp[—Uy p(N,M;L,,L,)1/Z[u,0,L] .
L,L,=1NM=0
(3.4)

The specific heat, mean area, and mean folding number are calculated as

(specific heat)=¢( UI%’,M>_< Un .y 72,
(mean area)E(LxXLy) ,

(mean bending number)={(N;,, ) =(N+M —2) .

In what follows, we present the results of numerical
studies. Figure 4 depicts the mean bending number, the
mean area, and the specific heat for membranes of size
L =30X30 for parameters u and ® in the range
—0.3<u,w<0.3. These seem to imply that there are (at
least) three different phases. In the region w>0 and

a) 0.3:0.3

> —2u, the membrane is in the completely flat phase.
The mean bending number is zero and the mean area is
maximam L2 In the region u <0 and w< —2u, the
membrane is in the completely folded state. The mean
bending number is 2(L —1) and the mean area is 1. In
the remaining region (4 >0,w <0), the membrane is in

FIG. 4. Mean bending number (a), mean
area (b), and specific heat (c) for squares lattice
of size L =30X30 for parameters 4 and o in
the range —0.3 <u,w <0.3. The first two are
normalized by their maximum values.
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the partially folded state. Both the mean bending num-
ber and the mean area are small but nonzero. We also
find a first-order transition from the completely flat to the
completely folded state at the line 2u +@w=0. Among
them all, the emergence of a ‘“‘partially folded state” on
the fourth quadrant of the (u,®) plane is interesting. In
this region, in order to minimize the potential of the sys-
tem, both bending number and lengths L,,L, have to be
small. From Table I, we can see that such a
configuration does mnot exist and equilibrium
configuration has to manage it. In the previous section,
by balancing these energies, the mean bending number
and the mean area are estimated as N, ~L'/> and
(L,XL,)~L*? We have estimated the exponent u of
the mean bending number (N, )~L* as
©1=0.3910.05. We also evaluated the exponent v of the
mean area (L, XL,)~L" as v~1.30+0.07 (Fig. 5). The
prediction of the mean-field theory is good. When there
is no interaction (¥ =0,0=0), the membrane is a direct
product of two random walks in one direction [8]. In this
free case, the mean bending number is of course 1L and
the exponent u=1.0. From Fig. 5(c) the exponent for the
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mean area is v=1.55. This means that the swell of the
partially folded state is smaller than that of the free case.
Next, we will discuss the phase transition between
these phases. Previously we have discussed the phase
transition between the completely flat phase and the com-
pletely folded phase at a line 2u +»=0; now we will dis-
cuss the other two cases. At first, we study the transition
from the completely flat phase to the partially folded
phase. In the previous section, we discussed that the
membrane with finite L shows a sequential folding transi-
tion. Figure 6 shows the behavior of the membrane. We
have fixed the bending rigidity at ¥ =0.5. Figure 6(a)
shows the behavior of the mean bending number as we
change the strength of attractive interaction w, which is
scaled with u /L, for system size L =8,16,24. In each
system size, the curve runs up in a rather discrete manner
like a staircase and its value at each plateau is almost in-
tegers. The length of each plateau becomes longer as o
becomes large. A more detailed graph around the origin
for the membrane of size L =30X 30 is shown in other
figures [Fig. 6(b)], with the behavior of the mean area
[Fig. 6(c)]. One notices that the first “jump” of the bend-

a) b)
10 100
vt e =
= 3 pey 3
wiz= —1 x T : —= - //‘:
- e A e
....................... P 3 1. P / e .
E ____________________ I e ’qa 10 D S e — e /
-~ P A O e T e = =
P Sy = - JEIol V2 S S i S —
-1 ST =} pES
ot i - = o
----- e
1 1
T10 10
InL InL
c)
1000
yw}-=-{0,;0)
/’/”
A 100 =
> >
~
8
~ o
Vv
= 10
1
10
InL

FIG. 5. System size dependence of mean bending number (a) and of mean area (b). Bending rigidity u is fixed at « =0.5. The lines
indicate a fit of the data yielding exponents u and v (mean bending number ~L* and mean area ~L"). The exponents are
#=0.39+£0.05 and v=1.3010.07. (c) System size dependence of mean area for free system (u,)=(0,0) (v=1.55).
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ing number from zero to one occurs at w = —2u /L while
the area becomes half of L2, which implies that the mem-
brane folds on itself and a crease neatly divides it in half.
This can be easily understood from the viewpoint of the
energetic competition between flat and singly folded state
in the previous section. As the bending number becomes
large, the energy gain by a fold becomes small and the
length of plateau becomes longer. We conclude that this
behavior of the membrane is a sequential folding transi-
tion of the membrane.

The phase transition between the partially folded state
and the completely folded state is discontinuous. Because
the mean bending number (N, ) changes its behavior
from (N ~L'"? to (N )=2(L—1) and this
change is not continuous. In addition, we can easily de-
scribe the double peak in the specific heat for the case

a) 20

©=0 [13] (see Fig. 7). These peaks approach each other
as the system size L becomes large and in the thermo-
dynamic limit (L — ), it becomes 8-function-like and
corresponds to a first-order transition. These two peaks
clearly remain in the domain o <0 and we think that the
transition from the partially folded (x >0) to a complete-
ly folded state (u <0) is a first-order transition.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we have studied the square lattice with
bending rigidity u and interaction w. As an interaction
between different elementary squares of the lattice, we
have discussed two types. The first one is a potential that
is proportional to contact area (CA), and the second one
is a potential that is proportional to"the number of con-
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FIG. 6. (a) Mean bending number { Ny, ) vs strength of attractive interaction w, which is scale with u /L for L =8,16,24 at
u =0.5. Mean bending numbers are quantized and plateaus emerge. (b),(c) More detailed graphs for mean bending number and
mean area around the origin for L =30. When a first folding transition occurs, the mean area becomes half. This means that a crease

neatly divides the membrane in half.
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FIG. 7. Specific heat for L =30 with ®=0. The solid line is
exact results (see Ref. [13]) and the dots are from numerical
data.

tact pairs of elementary squares (CP). Especially, we
have analyzed the stability of the completely flat phase
(u >0) with respect to attractive interactions (@ <0) and
that of the completely folded state (u <0) with respect to
repulsive interactions (w>0). Both attractive interac-
tions destroy the flat phase and these systems show a
sequential folding transition when the system size is
finite. However, the resulting states are different. In the
CA case the membrane is partially folded and in the CP
case the membrane is completely folded. Repulsive in-
teractions also destroy the completely folded state. In the
CA case, there occurs a first-order phase transition be-
tween a completely folded state to a completely flat state
at the line 2u +®=0. In the CP case, any amount of

repulsive interaction makes the membrane flat. These re-
sults are summarized in Fig. 3.

We have also performed numerical studies for the CA
case and confirmed several theoretical results. Especially,
there occurs a sequential folding transition. This means
that we can use the square lattice model with attractive
interactions as a simple model for the sequential folding
transition of a tethered membrane. Thermodynamical
behavior of the partially folded state is also studied and
its total folding number and its area behave as
Nigia ~L%%, (L,L,)~L"*. This phase is more “com-
pact” than the phase of the free membrane
(#,0)=(0.0,0.0). On the other hand, the behavior of the
membrane with CP interaction in the region (¢ > 0,0 <0)
is not clear when the three-body force exists. We cannot
compare the behavior of the membrane with these in-
teractions. Experiments on the polymerized membrane
in poor solvent showed that the membrane is in a com-
pact phase after several foldings [17,18]. However, we
cannot decide which interaction is better than the other
interaction in our analysis. From this point of view, the
square lattice model with bending rigidity and CP in-
teraction and three-body interaction deserves for future
study.

ACKNOWLEDGMENTS

The authors thank Professor M. Wadati for useful dis-
cussions and encouragements. S.M. thanks K. Nakaya-
ma for useful discussions about the interactions. Y.K.
thanks T. Takagi for suggestions about the entropy for
folding with restrictions.

[1] Proceedings of the Fifth Jerusalem Winter School, edited
by D. R. Nelson, T. Piran, and S. Weinberg, Statistical
Mechanics of Membranes and Surfaces (World Scientific,
Singapore, 1989).

[2] F. F. Abraham and D. R. Nelson, J. Phys. (Paris) 51, 2653
(1990).

[3] F. F. Abraham and D. R. Nelson, Science 249, 393 (1990).

[4] F. F. Abraham and M. Kardar, Science 252, 419 (1991).

[5] D. Liu and M. Plischke, Phys. Rev. A 45, 7139 (1992).

[6] G. S. Grest and I. B. Petsche, Phys. Rev. E 50, R1737
(1994).

[7] S. Mori and M. Wadati, Phys. Lett. A 201, 61 (1995).

[8] F. David and E. Guitter, Europhys. Lett. 5, 709 (1988).

[9] Y. Kantor and M. V. Jaric, Europhys. Lett. 11, 158 (1990).

[10] P. Di Francesco and E. Guitter, Phys. Rev. E 50, 4418
(1994).

[11] P. Di Francesco and E. Guitter, Europhys. Lett. 26, 455
(1994).

[12]J. des Cloizeaux and G. Jannink, Polymers in Solution
(Clarendon Press, Oxford, 1990).

[13] In the free case @ =0, we can calculate the partition func-
tion and other thermodynamic quantities for the discrete
system as

Z[u,0=0,L]={1+exp( _uL)}Z(L—l) ,

Niota=2(L —1)/{1+exp(uL)}

0, asu— o
—i{L—1, u—0
2(L —1),

Uu—>—oo ,

2
C (specific heat)=u2£‘—;1n2(u,a)=0,L)

cosh?uL /2
These results fit very well with numerical studies on the u
axis (Fig. 7).

[14] R. Zwanzig and J. I. Lauritzen, J. Chem. Phys. 48, 3351
(1968).

[15] See the review by F. W. Wiegel, in Phase Transition and
Critial Phenomena, edited by C. Domb and J. L. Lebowitz
(Academic, London, 1988), Vol. 7, Chap. 2.

[16] The free energy difference with system size L X L between
the completely flat phase and the one folded state with a
crease at its edge is 8F =(u +w)L and it is positive in the
region 2u +® >0 and w>0. Before the one folded state
appears, the completely folded state appears at the line
2u +®=0 and the intermediate folded state does not



53 SQUARE LATTICE WITH ATTRACTIVE INTERACTIONS 133

occur.
[17] T. Hwa, E. Kokufuta, and T. Tanaka, Phys. Rev. A R2235
(1991); X. Wen, C. Garland, T. Hwa, M. Kardar, E.
Kokufuta, Y. Li, M. Orkisz, and T. Tanaka, Nature (Lon-

don) 355, 426 (1992).
[18] M. S. Spector, E. Naranjo, S. Chiruvolu, and J. Zasadzin-
ski, Phys. Rev. Lett. 21, 2867 (1994).



